Improved earthquake aftershocks forecasting model based on long-term memory

نویسندگان

چکیده

A prominent feature of earthquakes is their empirical laws, including memory (clustering) in time and space. Several earthquake forecasting models, such as the epidemic-type aftershock sequence (ETAS) model, were developed based on these laws. Yet, a recent study [1] showed that ETAS model fails to reproduce significant long-term characteristics found real catalogs. Here we modify generalize include short- triggering mechanisms, account for long-time (exponents) discovered data. Our generalized accurately reproduces long-term/distance observed Italian Southern Californian The revised also improve after large shocks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

Long-Term Streamflow Forecasting Based on Relevance Vector Machine Model

Long-term streamflow forecasting is crucial to reservoir scheduling and water resources management. However, due to the complexity of internally physical mechanisms in streamflow process and the influence of many random factors, long-term streamflow forecasting is a difficult issue. In the article, we mainly investigated the ability of the Relevance Vector Machine (RVM) model and its applicabil...

متن کامل

the effect of teaching vocabulary through memory learning strategies on iranian intermediate efl learners long-term vocabulary retention

بسیاری از دبیران و دانش آموزان بر این باورند که یادگیری لغات آسان است و شیوه های مختلفی برای یادگیری وجود دارد گرچه یادآوری لغات پس از مدت طولانی بسیار دشوار و پرزحمت است . هدف از این تحقیق آن است که تاثیر استراتژی های حافظه بر روی نگهداری بلند مدت لغات در زبان آموزان خانم سطح متوسط در ایران را بررسی کند. قبل از شروع تدریس، آزمون تعیین سطحی به منظور داشتن زبان آموزان یک سطح برگزار شده و بر اساس...

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Journal of Physics

سال: 2021

ISSN: ['1367-2630']

DOI: https://doi.org/10.1088/1367-2630/abeb46